TALENs—an indispensable tool in the era of CRISPR: a mini review part 2

Published on
Embed video
Share video
Ask about this video

Scene 1 (0s)

40. Hockemeyer D, Wang H, Kiani S, Lai C, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734 41. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857 42. Wienert B, Wyman S, Richardson C, Yeh CD, Akcakaya P, Porritt MJ, Morlock M, Vu JT, Kazane KR, Watry HL, Judge LM, Conklin BR, Maresca M, Corn JE (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER- Seq. Science 364(6437):286–289 43. Cheng Y, Tsai SQ (2018) Illuminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biol 19(1):226. https:// doi.org/10.1186/s13059-018-1610-2 44. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84 45. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30(7):593–595. https://doi.org/1 0.1038/nbt.2304 46. Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42(10): 6762–6773. https://doi.org/10.1093/nar/gku305 47. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. https://doi.org/10.1038/nbt.2675 48. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647 49. Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41(20):9584–9592. https://doi.org/10.1093/nar/gkt714 50. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High- throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843. https://doi.org/10.1 038/nbt.2673 51. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. https://doi.org/10.1038/nbt.2623 52. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55. https://doi. org/10.1038/nrm3486 53. Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR (2015) Damaging the integrated HIV proviral DNA with TALENs. PLoS One 10(5): e0125652. https://doi.org/10.1371/journal.pone.0125652 54. Ooi SKT, O’Donnell AH, Bestor TH (2009) Mammalian cytosine methylation at a glance. J Cell Sci 122(16):2787–2791. https://doi.org/10.1242/jcs.015123 55. Liu X, Wu H, Ji X, Stelzer Y, Wu X, Cell SC (2016) Editing DNA methylation in the mammalian genome. Elsevier 56. Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M, Zoldoš V (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44(12):5615–5628 57. Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang Y-H, Zhou Y, Li W, Goodell MA (2017) Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun 8:16026 58. Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N, Shi Y (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22(10):1502–1504. https://doi.org/10.1038/cr.2012.127 59. Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, You W, Zhou R, Guo JT, Chen X, Peng X, Sun H, Huang H, Zhao H, Feng B (2014) Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 42(7):4375–4390. https://doi.org/10.1093/nar/gku109 60. Dupuy A, Valton J, Leduc S, Armier J, Galetto R, Gouble A, Lebuhotel C, Stary A, Pâques F, Duchateau P, Sarasin A, Daboussi F (2013) Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALENTM. PLoS One 8(11):e78678. https://doi.org/10.1371/journal.pone. 0078678 61. Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287(46):38427–38432. https://doi.org/10.1074/jbc. C112.408864 62. Liu L, Zhang Y, Liu M, Wei W, Yi C, Peng J (2020) Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors. J Mol Biol 432(4):1035–1047. https://doi.org/10.1016/j.jmb.201 9.11.023 63. Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, Williams SL, Moraes CT (2015) MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther 23(10):1592–1599. https://doi.org/10.1038/ mt.2015.126 64. Gammage PA, Moraes CT, Minczuk M (2018) Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet 34(2): 101–110. https://doi.org/10.1016/j.tig.2017.11.001 65. Piatek AA, Lenaghan SC, Neal Stewart C (2018) Advanced editing of the nuclear and plastid genomes in plants. Plant Sci 273:42–49. https://doi.org/1 0.1016/j.plantsci.2018.02.025 66. Santos-Moreno J, Schaerli Y (2020) CRISPR-based gene expression control for synthetic gene circuits. Biochem Soc Trans 48(5):1979–1993. https://doi. org/10.1042/BST20200020 67. Nakazato I, Okuno M, Yamamoto H, Tamura Y, Itoh T, Shikanai T, Takanashi H, Tsutsumi N, Arimura SI (2021) Targeted base editing in the plastid genome of Arabidopsis thaliana. Nat Plants 7(7):906–913. https://doi.org/1 0.1038/s41477-021-00954-6 68. Yaghmai R, Cutting GR (2002) Optimized regulation of gene expression using artificial transcription factors. Mol Ther 5(6):685–694. https://doi.org/1 0.1006/mthe.2002.0610 69. Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335(6190):563–564. https:// doi.org/10.1038/335563a0 70. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27. https://doi.org/10.1104/ pp.112.205179 71. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2): 143–148. https://doi.org/10.1038/nbt.1755 72. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. https://doi.org/10.1038/nature14136 73. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j. cell.2013.02.022 74. Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, Yu X, Lu SY, Chen Y, Xu YZ, Li Y, Gage FH, Mi S, Yao J (2018) CRISPR interference-based specific and efficient gene inactivation in the brain. Nat Neurosci 21(3):447–454. https:// doi.org/10.1038/s41593-018-0077-5 75. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8(11):2180–2196. https://doi.org/10.1038/nprot.2013.132 76. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3(1):968. https://doi.org/10.1038/ncomms1962 77. Laufer BI, Singh SM (2015) Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics Chromatin 8(1): 34. https://doi.org/10.1186/s13072-015-0023-7 78. Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179. https://doi.org/10.1007/s40142-016-0104-3 79. Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12(24):2159–2166. https://doi.org/10.1016/S0960-9822(02)01391-X 80. Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE (2013) Locus-specific editing of histone modifications at Bhardwaj and Nain Journal of Genetic Engineering and Biotechnology (2021) 19:125 Page 9 of 10.

Scene 2 (1m 2s)

[Audio] The researchers mentioned in the passage include Bhardwaj, Nain, Gregory, Zhang, Kobzik, Fedulov, Chen, Tang, Xiang, Jin, Li, Dong, Wang, Zhang, Ou, Yu, Moss, Wang, Nguyen, Jiang, Feleke, Kameswaran, Joyce, Naji, Glaser, Avrahami, Kaestner, Choudhury, Cui, Lubecka, Stefanska, Irudayaraj, Kholosy, Visscher.