Drone (UAV) Data Acquisition Preparation and Machine Learning Workflow.
Drone (UAV) Data Acquisition Preparation and Machine Learning Workflow.
Untitled 1 Toolbox Home Spatial Model Model Editor • Maker • Contents (S @ 2D View File c:ns Manage Data KJ Raster Vector Terrain Raster Drawing Help Google Earth Multispectral IMAGINE UAV Format Table O x Mosaic AutoSync Stereo Maps VirtualGlS ATCOR Workflow IMAGINE Workstation • Analyst • for IMAGINE • UAV• Common GEOSYSTEMS 2D View #1 : XS_truecoIor_sub.img Standard Network processing Marker lma e In ut Input Folder: File Selection Filter. •jpg Orientation Orientation Format: From Exif Orientation File: Time offset: Sign: + v e.g.: •jpg or DSC?.jpg or Allow incomplete orientation data Background Related Data Retriever 535440.00, 3766400.w (UTM/ Clarke 1866) Hours: Minutes: Accura of Camera Postion and Rotation An les 5.0 Seconds: Rotation angles [Deg.]: Position [m]: 5.0 Com utation O tions Orientation Presets: Surface Quality: Z Position [m]: 2.0 aerial medium Image Preselection: Surface Mode: generic height field Out uto •ons output EPSG: Create LAS: DSMO ions Create DSM: Resolution Type: Mosaic O tions Create Mosaic 32643 LAS Output File: (*.las) lasmalk.las DSM Output File: (*.img) malkdsm.img Original Mosaic Output File: (*.im malori.img Resolution 0m) 535440.m, 3766400.00 r.
Drone (UAV) Data Acquisition Preparation and Machine Learning Workflow.
Initialize Output Input Detection Information Initialize Image Segmenter Machine Intellect Output Machine Intellect Input Segment Image Using Deep Learning Machine Intellect Information.
Training data:- Is the Drone Data chip(small image) and class labels used to train AI/ML model. Data chip is of specific size, class-labels and its data structures. Must be similar data types and image bands for training and testing of model. Training epochs to understand and learn the training data..
Learning & Validating Accuracy. Model Accuracy Assessment Accuracy Percentage (%) Model Learning Accuracy(LA) 84 % Model Validation (VA) (15% of input chip) 78 %.
Drone (UAV) Data Acquisition Preparation and Machine Learning Workflow.
Convolution 3x3 ( ReLU ) Copy and crop Max pool 2x2 Transposed up-convolution 2x2 Convolution 1x1.
vector.shp Features Input edimag16bsub.img Raster Input Rasta stic:s Pa Feature Seled Attributæ Class Initiaize Random Forest H_mLmiz Fil Machire Intellect Output AttributeTable Classifi' usirg Machire Learnirg Tr •ningAttributelmportances rf_class limg Raster Output.
Background Related Data Retriever 741593.11. 3155809.92 View malakpur_old.ecw mulakpur finalmosaicl.ec Info (20 (UTM / WGS 84) 1 741593.11. 31550.92 meters (UTM Zone 43(WGS u Mao.
DRONE IMAGES BASED OUTCOMES-MALAKPUR (T2). .4.
CHANGE HIGHLIGHTED. File Home Manage Data Raster Vector Terrain 20 View mal-changeram.shp Toolbox Untitled:l - ERDAS IMAGINE 2020 Help Google Earth My Models Multispectral Raster Drawing Format Table Login to Smart M App c9 O view # 1 mal-changeramshp C] malakpurold_build_identii mUlakpur finalmosaicl Background Related Data 741710.18, 3155788.80 (UTM/WGSU) | 741710.18, 3155788.80 meters (UTM Zone43(WGS 84)).
Electric Locality, MALAKPUR Ice Web O RP - sutpv Goenua• SSingh6 v Group Growing 81.