A Generalized Human-In-The-Loop Stability Analysis in the Presence of Uncertain and Redundant Actuator Dynamics

Published on Slideshow
Static slideshow
Download PDF version
Download PDF version
Embed video
Share video
Ask about this video

Scene 1 (0s)

[Audio] Hello everyone, In this presentation, I would like to talk about human-in-the-loop stability analysis in the presence of uncertain and redundant actuator dynamics

Scene 2 (19s)

[Audio] Overview Adaptive control allocation Controller Human-In-The-Loop stability analysis Simulation results 1 / 15.

Scene 3 (35s)

[Audio] Problem statement 2 / 15. . . Problem statement.

Scene 4 (42s)

[Audio] Control allocation S. S. Tohidi, Y. Yildiz, and I. Kolmanovsky, " Adaptive Control Allocation for Constrained Systems," Automatica, 2020. 3 / 15.

Scene 5 (1m 4s)

[Audio] Adaptive control allocation 4 / 15. . . Adaptive control allocation.

Scene 6 (1m 12s)

[Audio] Adaptive control allocation ▶ Virtual dynamics ˙y = Amy + BΛu − v 4 / 15.

Scene 7 (1m 26s)

[Audio] Adaptive control allocation ▶ Virtual dynamics ˙y = Amy + BΛu − v ▶ Reference model ˙ym = Amym 4 / 15.

Scene 8 (1m 45s)

[Audio] Adaptive control allocation ▶ Virtual dynamics ˙y = Amy + BΛu − v ▶ Reference model ˙ym = Amym ▶ Adaptive law ˙ θv = ΓθProj � θv, −veT PB � 4 / 15.

Scene 9 (2m 18s)

[Audio] Adaptive control allocation ▶ Virtual dynamics ˙y = Amy + BΛu − v ▶ Reference model ˙ym = Amym ▶ Adaptive law ˙ θv = ΓθProj � θv, − veT PB � ▶ Control input u = θT v v 4 / 15.

Scene 10 (2m 56s)

[Audio] Controller ▶ Consider the overacuated plant to be in the following form: � ˙x( 1) ˙x(2) � = �A1,1 A1,2 A2,1 A2, 2 � �x(1) x(2) � +Bvv, y = [ 0r×(n−r) Ir] �x(1) x(2) � 5 / 15.

Scene 11 (3m 41s)

[Audio] Sliding mode controller ▶ Sliding surface s(x(2)(t), x( 2)(t0), t) = x(2)(t) − x(2)(t0)e−¯λ(t−t0) − 2 πr(t)tan− 1�¯λ(t − t0) � = 0 S. S. Tohidi, Y. Yildiz, and I. Kolmanovsky, " Sliding mode control for over-actuated systems with adaptive control allocation and its applications to flight control," IEEE Conference on Control Technology and Applications ( CCTA), 2021. 6 / 15.

Scene 12 (4m 39s)

[Audio] Sliding mode controller ▶ Sliding surface s(x( 2)(t), x(2)(t0), t) = x(2)(t) − x(2)(t0)e−¯λ(t−t0) − 2 πr(t)tan−1�¯λ(t − t0) � = 0 ▶ Sliding mode controller v(t) = − A2, 1x(1)(t) − A2,2x(2)(t) − ¯λx(2)(0)e−¯λt + 2 π ˙r(t)tan−1(¯λt) + 2 πr(t) ¯λ 1 + ¯λ2t2 − signv(s(x(2)(t), x(2)(0), t)) ρ, S. S. Tohidi, Y. Yildiz, and I. Kolmanovsky, " Sliding mode control for over-actuated systems with adaptive control allocation and its applications to flight control," IEEE Conference on Control Technology and Applications ( CCTA), 2021. 6 / 15.

Scene 13 (6m 17s)

[Audio] ADMIRE model x = [α β p q r]T y = [p q r]T u = [ uc ure ule ur]T uc ∈ [ −55, 25] × π 180rad, ure, ule, ur ∈ [ −30, 30] × π 180rad ˙x = Ax + BuΛu = Ax + Bvv v = BΛu, Bu = BvB, Bv = � 02× 3 I3×3 � 7 / 15.

Scene 14 (6m 58s)

[Audio] Closed loop dynamics 8 / 15. . . Closed loop dynamics.

Scene 15 (7m 5s)

[Audio] Closed loop dynamics ▶ � ˙α(t) ˙β(t) � = A1, 1 �α(t) β(t) � + A1, 2   p(t) q(t) r(t)   8 / 15.

Scene 16 (7m 39s)

[Audio] Closed loop dynamics ▶ � ˙α(t) ˙β(t) � = A1,1 �α(t) β(t) � + A1,2   p(t) q(t) r(t)   ▶   ˙p(t) ˙q(t) ˙r(t)   = −¯λe−¯ λt   p(0) q( 0) r(0)   + 2 πtan− 1(¯λt)   ˙pd(t) ˙qd(t) ˙rd(t)   + 2 π ¯λ 1 + ¯ λ2t2   pd(t) qd(t) rd(t)   − signv(s)ρ 8 / 15.

Scene 17 (9m 16s)

[Audio] Stability analysis: transfer function model ▶ qd(s) θd(s) − θ(s) = bms ˆm + bm−1s ˆm− 1 + ... + b0 sˆn + an−1sˆn−1 + ... + a0 9 / 15.

Scene 18 (9m 44s)

[Audio] Stability analysis: transfer function model ▶ qd(s) θd(s) − θ(s) = bms ˆm + bm−1s ˆm− 1 + ... + b0 sˆn + an−1sˆn−1 + ... + a0 ▶ ˙xh(t) = Ahxh(t) + Bh (θd(t) − θ(t)) qd(t) = Chxh(t) + Dh (θd(t) − θ(t)) 9 / 15.

Scene 19 (10m 30s)

[Audio] Stability analysis: transfer function model ▶ qd(s) θd(s) − θ(s) = bms ˆm + bm−1s ˆm−1 + ... + b0 sˆn + an−1sˆn− 1 + ... + a0 ▶ ˙xh(t) = Ahxh(t) + Bh (θd(t) − θ(t)) qd(t) = Chxh(t) + Dh (θd(t) − θ(t)) ▶ q(t) = q( 0)e−¯λt + 2 πtan−1(¯λt)qd(t) 9 / 15.

Scene 20 (11m 29s)

[Audio] Stability analysis: transfer function model ▶ qd(s) θd(s) − θ(s) = bms ˆm + bm−1s ˆm−1 + ... + b0 sˆn + an−1sˆn−1 + ... + a0 ▶ ˙xh(t) = Ahxh(t) + Bh (θd(t) − θ(t)) qd(t) = Chxh(t) + Dh (θd(t) − θ(t)) ▶ q(t) = q( 0)e−¯λt + 2 πtan− 1(¯λt)qd(t) ▶ ˙θ(t) = q(t) 9 / 15.

Scene 21 (12m 32s)

[Audio] Stability analysis: transfer function model ▶ � ˙θ(t) ˙xh(t) � = �− 2 πtan−1(¯λt)Dh 2 πtan− 1( ¯λt)Ch −Bh Ah � � �� � ¯ A(t) � θ(t) xh(t) � � �� � ¯x(t) + � 2 πtan−1(¯λt)Dh Bh � � �� � ¯B θd(t) + � q( 0)e−¯λt 0 � � �� � ω(t) 10 / 15.

Scene 22 (13m 59s)

[Audio] Stability analysis: transfer function model ▶ � ˙θ(t) ˙xh(t) � = �− 2 πtan− 1(¯λt)Dh 2 πtan−1( ¯λt)Ch −Bh Ah � � �� � ¯ A(t) � θ(t) xh(t) � � �� � ¯x(t) + � 2 πtan−1(¯λt)Dh Bh � � �� � ¯B θd(t) + � q( 0)e−¯λt 0 � � �� � ω(t) ▶ ˙¯x(t) = ¯A(t)¯x(t) + ¯Bθd(t) + ω(t) 10 / 15.

Scene 23 (15m 37s)

[Audio] Human-In-The-Loop stability analysis: TF model Theorem (1) The time-varying system ˙¯x(t) = ¯A(t)¯x(t), is uniformly exponentially stable if λi ��− Dh Ch −Bh Ah �� ∈ C−, i = 1, ..., ˆn + 1, where λi(.) provides ith eigenvalue of the matrix. 11 / 15.

Scene 24 (16m 18s)

[Audio] Human-In-The-Loop stability analysis: TF model Theorem ( 2) The solution of the linear time-varying system ˙ ˆx(t) = ˆA(t)ˆx(t) + ˆBθd(t) + ω(t), is bounded if λi ��− Dh Ch −Bh Ah �� ∈ C−, i = 1, ..., ˆn + 1. 12 / 15.

Scene 25 (17m 1s)

[Audio] Simulation results Human transfer function λi       − Dh Ch −Bh Ah       TF1 10 s+10 −1.127, −8.873 TF2 s+1 (s+2)(s+ 3) −0.16, −2.4 ± 0.6j TF3 s+ 1 (s−2)(s+3) 1.655, 0.21, −2.86 TF4 s−1 (s+2)(s+3) 0.13, −2.5 ± 1.04j TF5 (s+1)(s+ 2) (s+3)(s+ 4) −0.144, −2.678, −5.177 TF6 (s+1)(s+2) (s+3)(s+4)(s+ 5) −0.03, −2.8, −4.6 ± 0.96j 13 / 15.

Scene 26 (19m 4s)

[Audio] Simulation results 14 / 15. . . Simulation results.

Scene 27 (19m 15s)

[Audio] Future works ▶ Human-In-The-Loop stability analysis considering time-delay, plant non-linearity. 15 / 15.

Scene 28 (19m 28s)

[Audio] Future works ▶ Human-In-The-Loop stability analysis considering time-delay, plant non-linearity. ▶ Experimental results. 15 / 15.

Scene 29 (19m 44s)

[Audio] Main references [ 1] S. S. Tohidi, Y. Yildiz, and I. Kolmanovsky, " Adaptive Control Allocation for Constrained Systems," Automatica, 2020. [ 2] S. S. Tohidi, Y. Yildiz, and, I. Kolmanovsky, " Fault Tolerant Control for Over-Actuated Systems: An Adaptive Correction Approach," American Control Conference, 2016. [ 3] S. S. Tohidi, and Y. Yildiz, " Adaptive Control Allocation: A Human-In-The-Loop Stability Analysis," International Federation of Automatic Control ( IFAC), Berlin, Germany, 2020. [ 4] S. S. Tohidi, and Y. Yildiz, " A Control Theoretical Adaptive Human Pilot Model: Theory and Experimental Validation," IEEE Transaction on Control Systems Technology, 2020. [ 5] S. S. Tohidi, and Y. Yildiz, "Adaptive human pilot model for uncertain systems," European Control Conference ( ECC), 2019. [ 6] D. T. Mcruer, and H. Jex, "A review of quasi-linear pilot models," IEEE Transactions on human Factors in Electronics, vol. 8, pp. 231- 249, 1967..

Scene 30 (21m 54s)

[Audio] Thank you.. . . Thank you..